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= I Abstract

= ' [ow does the brain recognize three-dimensional objects? An initial step towards the understanding of the
EM eural substrate of visual object recognition can be taken by studying first the nature of object representa-

CA ion, as manifested in behavioral studies with humans or non-' iman primates. One fundamental question
%4 3whether these representations are object or viewer centered. We trained monkeys to recognize computer

SA endered objects presented from an arbitrarily chosen training view, and subsequently tested their ability to
generalize recognition for views generated by mathematically rotating the objects around any arbitrary axis.

'\ .n agreement with human psychophysical work (Rock and DiVita, 1987, Biilthoff and Edelman, 1992), our
results show that recognition at the subordinate level becomes increasingly difficult for the monkey as the
3timulus is rotated away from a familiar attitude, and thus provide additional evidence in favor of memorial
representations that are viewer-centered. When the animals were trained with as few as three views of the
object, 1200 apart, they could often interpolate recognition for all views resulting from rotations around the
same axis. The possibility thus exists that even in the case of a viewer-centered recognition system, a small
number of stored views may suffice to achieve the view-invariant performance that humans and non-human
primates typically achieve when recognizing familiar objects. These results are also in agreement with a
recognition model that accomplishes view-invariant performance by storing a limited number of object views
or templates together with the capacity to interpolate between the templates (Poggio and Edelman, 1990).
In such a model, the units involved in representing a learned view are expected to exhibit a bellshaped
tuning curve centered around the learned view, while interpolation is instantiated in the summed activity
of the units.
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1 Introduction tives [1,121. In contrast, viewer-centered representations
Most theories of object recognition assume that the vi- model three-dimensional objects as a set of 2D views,

or aspects, and recognition consists of matching image
sulM system stores a representation of at object and features against the views in this set.
that recognition occurs when this stored representation When tested against human behavior, object-centered
is matched to its corresponding sensory representation representations predict. well the view-independent recog-

generated from the viewed object [281. What. is, how- n ttion oreojct we ve r, ps cop -

ever, the nature of these representations, what is stored ical studies using familiar objects to investyigate the

in memory, and how is matching achieved? A space of
processes underlying object constancy, i.e. viewpoint-

possible representations could be characterized by ad- iriantsrecognitino object can be vieading -
invariant recognition of objects, can be misleading be-

dressing the issues of (1) the recognition task, (2) the cause a recognition system based on 3D descriptions can
attributes to be represented, (3) the nature of primitives not easily be discerned from a viewer centered system
that would describe these attributes, and (4) the spatial exposed to a sufficient fumber of object views. Further-

reference frame in respect. to which the object is defined.
more, object-centered representations fail to account for

Representations may vary for different recognition performance in recognition tasks with various kinds of
tasks. A fundamental task for any recognition system novel objects at the subordinate level [4,6,18,19,27].
is to cut up the environment into categories the mere- Viewer-ceintered representations, on the other hand.

bers of which, although nonidentical, are conceived of can accntfr reognition ormane at. any o

as equivalent. Such categories often relate to each other nomic level, but they have been often considered t an -

by means of class inclusion, forming taxonomies. Ob- plausible due to the vast amount of memory required

jects are usually recognized first at a particular level of to s ue tsriae obet ve nee o achiev
abstactoncaled he asi leel 25] Fo exmpl, a to store all discriminable object, views needed to achieve

abstraction, called the basic level [25]. For example, a viewpoint invariance. Yet., recent, theoretical work shows

Golden-retriever is more likely to be first perceived a that a simple network can achieve viewpoint invariance

a dog, rather than as a retriever or a mammal. Classi- by interpolating between a small number of stored views

fications at the basic level carry the highest amount of [16]. Computationagly, this network uses a small set of

information about a category and are usually character- spars da tac ron ding t o n ob es tr ai n vews

ized by distinct shapes [25]. Classifications above the synhse a approxmin to a mu'tivariefc
basi leelsuprorinae ctegrie, ae mre eneal, to synthesize an approximation to a nmultivariate func-

basic level, superordinate categories, are more general, tion representing the object. The approximation tech-
while those below the basic level, subordine cattegories, nique is known by the name of Generalized Radial Basis
are morer specifi, sharing a great number of attributes Functions (GRBFs), and it has been shown to be math-
with other subordinate categories, and having to a large ematically equivalent to a multilayer network [17]. A
extent similar shape (for a thorough discussion of cate- special case of such a network is that of the Radial Basis
tories see [8,24,25]). Representations of objects at differ- Functions (RBFs) that can be conceived of as "hidden-
ent taxonomic levels may differ in their attributes, the layer" units, the activity of which is a radial function of
nature of primitives describing various attributes, and the disparity between a novel view and a template stored
the reference frame used for the description of the ob- in the unit's memory. Such an interpolation-based net-
ject. work makes both psychophysical and physiological pre-

In primate vision, shape seems to be the critical at- dictions [15) that can be directly tested against behav-
tribute for object recognition. Material properties, such ioral performance and single cell activity.
as color or texture may be important primarily at the In the experiments described below, we trained mon-
most subordinate levels. Recognition of objects is typi- keys to recognize novel objects presented from one view,
cally unaffected in gray-scale photographs, line drawings, and subsequently tested their ability to generalize recog-

or in cartoons with wrong color and texture information. nition for views generated by mathematically rotating

An elephant, for instance, would be recognized as an ele- the objects around arbitrary axes. The stimuli, exam-

phant, even if it were painted yellow and textured with pies of which are shown in Figure 1, were similar to

blue spots. Evidence as to the importance of shape for those used by Edelman and Biglthoff (1992) [6w in hu-

object perception comes also from clinical studies show- man psycopy E xerments. Our aim wa te-
ing hatthebrekdon o recgniion reultng rom man psychophysical experiments. Our aim was to ex-

ing that the breakdown of recognition, resulting from amine whether non-human primates show viewpoint in-
circumscribed damage to the human cerebral cortex, is variance at the subordinate level of recognition. Brief
most marked at the subordinate level, at which the great- reports of these experiments have been published previ-
est shape similarities occur [5]. osy[01]

Models of recognition differ in the spatial frame ously [10,11].

used for shape representation. Current theories using 2 Materials and Methods
object-centered representations assume either a com-
plete three-dimensional description of an object [28], or 2.1 Subjects and Surgical Procedures

a structural description of the image specifying the re- Three juvenile rhesus monkeys (Macaca mulatla) weigh-
lationships among viewpoint-invariant volumetric primi- 1 ing 7-9 kg were tested. The animals were cared for in



accordance with the National Institutes of Health Guide, for the monkey.
and the guidelines of the Animal Protocol Review Corn- During the behavioral training, independent of the re-
mittee of the Baylor College of Medicine. inforcement schedule, the monkey always received feed-

The animals underwent a surgery for the placement back as to the correctness of its response. One incorrect
of a head restraint post, and a scleral-search eye coil report. aborted the entire observation period. During the
[9] for measuring eye movements. The monkeys were psychophysical data collection, on the other hand, the
given antibiotics (Tribrissen 30 mg/kg) and analgesics monkey was presented with novel objects and no feed-
(Tylenol 10 mg/kg) orally one day before the operation. back was given during the testing period. The behav-
The surgical procedure was carried out under strictly ior of the animals was continuously monitored during
aseptic conditions while the animals were anesthetized the data collection by computing on-line hit rate and
with isoflurane (induction 3.5% and maintenance 1.2(%, false alarms. To discourage arbitrary performance or
- 1.5%, at 0.8 L/min Oxygen). Throughout the surgi- the development of hand-preferences, -.g. giving only
cal procedure the animals received 5%, dextrose in lac- right hand responses, sessions of data collection were
tated Ringer's solution at a rate of 15 mil/kg/hr. Heart randomly interleaved with sessions with novel objects,
rate, blood pressure and respiration were monitored con- in which incorrect, responses aborted the trial.
stantly and recorded every 15 minutes. Body tempera- 2.3 Visual Stimuli
ture was kept, at, 37.4 degrees Celsius using a heating
pad. Postoperatively, an opioid anelgesic was admin- Wire-like and spheroidal objects were generated mathe-
istered (Buprenorphine hydrochloride 0.02 mg/kg, IM) matically and presented on a color monitor (Figure 1).
every 6 hours for one day. Tylenol (10 uug/kg) and an- The selection of the vertices of the wire objects within
tibiotics (Tribrissen 30 mg/kg) were given to the animal a three-dimensional space was constrained to exclude
for 3-5 days after the operation. intersection of the wire-segments and extremely sharp

angles between successive segments, and to ensure that
2.2 Animal Training the difference in the moment of inertia between different

wires remained within a limit of 10%X. Once the vertices
Standard operant conditioning techniques with positive were selected the wire objects were generated by deter-
reinforcement were used to train the monkey to perform mining a set of rectangular facets covering a hypothetical
the task. Initially, the animals were trained to recognize surface of a tube of a given radius that joined successive
the target's zero view among a large set of distractors, vertices.
and subsequently were trained to recognize additional The spheroidal objects were created through the gen-
target views resulting from progressively larger rotations eration of a recursively-subdivided triangle mesh ap-
around one axis. After the monkey learned to recog- proximating a sphere. Protrusions were generated by
nize a given object from any viewpoint in the range of randomly selecting a point on the sphere surface and

-90*, the procedure was repeated with a new object. In stretching it outward. Smoothness was accomplished by
the early stages of training several days were required increasing the number of triangles forming the polyhe-
to train the animals to perform the same task for a new dron that represents one protrusion. Spheroidal stimuli
object. Four months of training was required on average were characterized by the number, sign (negative sign
for the monkey to learn generalizing the task across dif- corresponded to dimples), size, density and sigma of
ferent types of objects of one class, and about six months the gaussian type protrusions. Similarity was varied by
were required for the animal to generalize for different
types of object classes, changing these parameters as well as the overall size of

Within an object class the similarity of the targets

to the distractors was gradually increased, and in the fi- 3 Results
nal stage of the experiments distractor wire-objects were
generated by adding different degrees of positional or ori- 3.1 Viewpoint-Dependent Recognition
entation noise to the target objects. A criterion of 95% Performance
correct for several objects was required to proceed with Three monkeys and two human subjects participated in
the psychophysical data collection, this experiment yielding similar results. Only the mon-

In the early phase of the animal's training a reward key data are presented in this paper. The animals were
followed each correct response. In the later stages of the trained to recognize any given object viewed on one oc- C3
training the animals were reinforced on a variable-ratio casion in one orientation, when presented on a second C3
schedule which administered a reward after a specified occasion in a different orientation. Technically, this is
average number of correct responses had been given. Fi- a typical recognition, "old-new" task, whereby the sub-
nally, in the last stage of the behavioral training the ject's ability to retain stimuli to which it has been ex-
monkey was rewarded only after ten consecutive correct posed is tested by presenting those stimuli intermixed
responses. The end of the observation period was sig- with other objects never before encountered. The sub-
nailed with a full-screen, green light and a juice reward ject is required to state for each stimulus whether it is2i



"old", i.e. familiar, or "new", i.e. never seen before. This a view of the target. The abscissa shows the distractor
type of task is similar to the yes-no task of detection in number, and the squares the false alarm rate for 20 pre-
psychophysics and can be studied under the assumptions sentations of each distractor. Recognition performance
of the signal detectability theory [7,13]. for rotations around the vertical, horizontal, and the two

Figure 2a describes the sequence of events in a single oblique axes (±45') can be seen in Figure 3c. The X and
observation period. Successful fixation of a central light Y axis on the bottom face of the plot show the rotations
spot was followed by the iearning phase, during which in depth, and the Z axis the experimental hit rate.
the monkeys were allowed to inspect, an object, the tar- To exclude the possibility that the observed view de-
get, from a given viewpoint, arbitrarily called the zero pendency was specific to non-opaque structures lacking
vieew. To provide the subject with 3D structure infor- extended surface, we have also tested recognition perfor-
mation, the target was presented as a motion sequence mance using spheroidal. amoeba-like objects with char-
of 10 adjacent, Gouraud-shaded views, 20 apart, cen- acteristic protrusions and concavities. Thirty-six views
tered around the zero view. The animation was accom- of a target amoeba and 120 distractors were used in any
plished at a 2 frames-per-view temporal rate, i.e. each given session. As illustrated in Figure 4 the monkey
view lasted 33.3 msec. yielding the impression of an ob- was able to generalize only for a limited number of novel
ject oscillating slowly ±100 around a fixed axis. views clustered around the views presented in the train-

The learning phase was followed by a short fixation ing phase. In contrast, performance was found to be
period after which the testing phase started. Each test- viewpoint-invariant when the animals were tested for ba-
ing phase consisted of up to 10 trials. The beginning sic level classifications, or when they were trained with
of a trial was indicated by a low-pitched tone, immedi- multiple views of wire-like or amoeba-like objects. Fig-
ately followed by the presentation of the test stimulus, ure 5 shows the mean performance of three monkeys for
a shaded, static view of either the target or a distrac- each of the object classes tested. Each curve was gener-
tor. Target views were generated by rotating the object ated by averaging individual hit rate measurements ob-
around one of four axes, the vertical, the horizontal, the tained from different animals for different objects within
right oblique, or the left oblique (Fig. 2b). Distractors a class. The data in Figure 5b were collected from three
were other objects of the same or different class (Fig. 1). monkeys using two shperoidal objects. The asymmetric

Two levers were attached to the front panel of the tuning curve denoting better recognition performance for
monkey chair, and reinforcement was contingent upon rightwards rotations is probably due to asymmetric dis-
pressing the right lever each time the target was pre- tribution of characteristic protrusions in the two amoe-
sented. Pressing the left lever was required upon pre- boid objects. Figure 5c shows the ability of monkeys
sentation of a distractor. Note (see methods below) that to recognize common objects, e.g. a teepot. presented
no feedback was given to the animals during the psy- from various viewpoints. Distractors were other common
chophysical data collection. A typical experimental ses- objects or simple geometrical shapes. Since all animals
sion consisted of a sequence of 60 observation periods, were already trained to perform the task indepent of the
each of which lasted about 25 seconds. object type used as a target, no familiarization with the

Figure 3a shows the performance of one of the mon- object's zero-view preceded the data collection in these
keys for rotations around the vertical axis. Thirty target experiments. Yet, the animals can generalize recognition
views and 60 distractor objects were used in this experi- for all tested novel views.
ment. On the abscissa of the graph we plot the rotation For some objects the subjects were better in their abil-
angle and on the ordinate the experimental hit rate. The ity to recognize the target from viows resulting from
small squares show performance for each tested view for 180 degree rotations. This type of behavior is evident
240 presentations. The solid line was obtained by a dis- in Figure 6a for one of the monkeys. As can be seen
tance weighted least squares smoothing of the data using in the figure, performance drops for views farther than
the McLain algorithm [14]. The small insets show ex- 300 but it resumes as the unfamiliar views of the tar-
amples of the tested views. The monkey could identify get approach the 1800 view of the target. This behavior
correctly the views of the target around the zero view, was specific to those wire-like objects, for which the zero
while its performance dropped below chance levels for and 1800 views appeared as mirror-symmetrical images
disparities larger than 30 degrees for leftward rotations, of each other, due to accidental minimal self-occlusion.
and larger than 60 degrees for rightward rotations. Per- In this respect, the improvement in performance paral-
formance below chance level is probably the result of the lels the reflt.ctional invariance observed in human psy-
large number of distractors used within a session, which chophysiral experiments [2]. Such reflectional invariance
limited learning of the distractors per se. Therefore an may also partly explain the observation that informa-
object that was not perceived as a target view was read- tion about bilateral symmetry simplifies the task of 3D
ily classified as distractor. recognition by reducing the number of views required to

Figure 3b shows the false alarm rate, that is, the per- achieve object constancy [30]. Not surprisingly, perfor-
centage of time that a distractor object was reported as mance around the 180 degree view of an object did not.



improve for any of the opaque, spheroidal objects used To directly compare the network performance with the
in these experiments, psychophysical data described above we used the same

wire objects used in our first experiment (Generalization
3.2 Generalization Field: Simulations Fields), and applied a decision theoretic analysis on the

Poggio and Edelman (1990) described a regularization network's output. [7]. In Figure 8a the curve fT(X), to

network capable of performing view-independent recog- the right, represents the distribution of network activ-

nition of three-dimensional wire-like objects, after initial ities that occur on those occasions, in which the input

training with a limited set of views of the objects [161. is a view of the target. Accordingly, the curve fD(X),

The se. size in their experiments, 80-100 views of an ob- to the left. represents the distribution of activities when

ject for the entire viewing sphere, predicts a generaliza- the input is a given distractor. The abscissa of the graph

tion field of about 30 degrees for any given rotation axis, represents stimulus strength, which increases for increas-

which is in agreement with human psychophysical work ing familiarity of the object, that is for views nearer to

[4,6,18,19], and with the data presented in this paper. the trained view. Taken as an ideal observer's opera-
tion, the network's decision to respond "old" (target) or

Figure 7 illustrates an example of such a network and "new" (distractor) depends on an adopted decision crite-
its output activity. A 2D view (Fig. 7a) can be rep- rion Xc. The gray area on the right of X(. represents the
resented as a vector of some visible feature points on a posteriori probability of the network correctly identi-
the object. In the case of wire objects, these features
could be the Xy coordinates of the vertices, the ori- fying a target, and it is denoted with P(TIT). while the
cntatiould b orert , si coordnaeothtexture ve ort the dark cross-hatched area on the right of Xc represents
entation, corners, size, length, texture and color of the the probability P(TjD) of a false alarm. On the left.

segments, or any other characteristic feature. In the ex- the area markd wt horizontal ln the

am ple of Figure 7b the input vector consists of seven probablity ofaacorretdrejecion, ian nthe arae withve rti-
segmnt rietatons.Forsimlicty w asumeas any probability of a correct rejection, and the area with verti-segment orientations. For simplicity we assume as many cal lines represents the probability of failing to recognize

basis functions as the views in the training set. Each cllnsrpeet h rbblt ffiigt eonz
basis funitions t iew in the "hidden-ler"cal s se. Edis- the target. As the cutoff point Xc runs through its pos-
basis unit, Un, in the in -layer calculats the Ti, sible values, it generates a curvilinear relation between
tance IIV-TdI{ of the input vector V from its center T,, P(TIT) and P(TiD) (Fig. 8b) known as the Receiver

i.e. its learned or "preferred" view, and it subsequently Operating Characteristic (ROC) curve. The area un-

computes the function exp(-IIV - Till) of this distance. derneath this curve has bee. shown to amount to the

The value of this function is regarded as the activity of percentage correct performance of an ideal observer in

the unit and it peaks when the input is the trained view p erna tiverformance of an [da obs e
itself. The activity of the network is conceived of as two-alternative forced-choice (2AFC) task 7 (page
itself.igThedactivity of thefnetworkniissconceivedIoftas 45-47). In this model, performance depends solely on
the weighted, linear sum of each unit's output. In the the distance d' between the means of the fT(X) and
present simulations we assume that each unit's output fD(X) distributions, revealing the actual sensitivity of
is superimposed on Gaussian noise, N(V,-ui), the sigma the recognition system. The distance d' is determined
or of which was estimated from single-unit data in the in standard deviation units. A basic assumption in this
inferotemporal cortex of the macaque monkey [11]. type of analysis is that the events leading to an "old" or

The four plots in Figure 7c show the output of each "new" response are normally distributed. Therefore, the
RBF unit when presented with views generated by ro- selection of the vertices of the wire-like objects was con-
tations around the vertical axis. Units U1 through U 4  strained to ensure that the activity of the network across
are centered on the 0, 60, 120, and 180 degree views of the set of different distractors was distributed normally
the object respectively. The abscissa of the plots shows (Fig. 8c).
the rotation angle and the ordinate the unit's output
normalized at its response to its center. Note the bell-
shaped response of each unit as the target object is ro-
tated away from its familiar attitude. The output of each
unit can be highly asymmetric around the center since The white bars in Figure 9a show the distribution of
the independent variable in the plots (rotation angle) is the network activity when the input was any of the 60
different from the argument of the exponential function. distractor wire objects. Black bars represent the activ-
Figure 7d shows the total activity of the network under ity distribution for a given target view (-50, -30, 0, 30,
"zero" noise conditions. The thick, gray line on the left and 50 degrees). Complete ROC curves for views gener-
plot illustrates the network's output when the input is ated by leftward and rightward rotations are illustrated
any of the 36 tested target views. The right plot shows in Figures 9b and c respectively. Figure 9d shows the
its mean activity for any of the 36 views of each of the 60 performance of the network as an observer in a 2AFC
distractors. The thick, black lines in Figures 7b, c, and d task. Open squares represent the area under the con-
show the representation and the activity of the same net- responding ROC curve, and the gray, thick line shows
work when trained with only the zero view, simulating modeling of the data with a gaussian function computed
the actual psychophysical experiments described above, using the Quasi-Newton minimization technique.



3.3 Generalization Field: Psychophysics efficient of reaction times was minimized. A total of 600

The purpose of these experiments was to generate psy- presentations were required to achieve the above condi-

chometric curves that could be used for comparing the tions, after which testing and data collection began.

psychophysical, physiological, and computational data During a single observation period, the monkey was

in the context of the above task. One way to generate first. shown the familiar 0' and 1200 views of the ob-

ROC curves in psychophysical experiments is to vary Yet, and then presented sequentially with 10stimuli that

the a priori probability of signal occurance, and instruct could be either target or distractor views. Within one

the observer to maximize the percentage of correct re- experimnental session each of the 36 tested target views

sponses. Since the training of the monkeys was designed was presented 30 times. The spikes on the YZ plane of

to maximize the animal's correct. responses, changing the plot show the hit rate for each view generated by

the a priori probability of target occurance did induce rotations around the Y axis. The solid line represents a

a change in the animal's decision criterion as is evident distance-weighted, least-squares smoothing of the data

in the variation of hits anti false alarms in each curve of using the McLain algorithm [14]. The results show that

the Figures 10a and b. interpolation between familiar views may be the only
therliato aciee probyr the mionke,.'s recognition svs-The data were obtained by setting thegeneralization achieved bytem. No extrapolation is evident with the exception of

ability of target occurance in a block of observation pe- teni. noreaplo is eviewt w rth t exeption0o
riods to 0.2. 0.4, 0.6, or 0.8. Figures 10a and b show the slightly increased hit rate for views around the-1200
ROC curves for leftward and rightward rotations respec- view of the object, that, approximately corresponds to a

tively Each curve is created from the four pairs of hit 180 degree rotation of some of the interpolated views.

and false alarm rates obtained for one given target view. The contour plot summarizes the performance of the

All target views were tested using the same set of distrac- monkey for views generated by rotating the object

tors. The percentage-correct performance of the monkey around the horizontal, vertical, and the two oblique axes.
is plotted in Figure 10c. Each filled circle represents the Thirty six views were tested for each axis, each presentedarea under the corresponding ROC curve in Figures tha 30 times. The results show that the ability of the monkeyand b. The thick, gray line shows modeling of the data to recognize novel views is limited to the space spannedwith a gaussian function. Note the similarity between between the two trained views as predicted by the modelthe monkey's performance and the simulated data (thin of nonlinear approximation.gray line). The experiment was repeated after briefly training themonkey to recognize the 600 view of the object. Dur-
3.4 Interpolation between two trained views ing the second "training period" the animal was simply

A network, such as that in Figure 7, represents an object given feedback as to the correctness of the response for

by a set of 2D views, the templates, and when the ob- the 60' view of the object. The results can be seen in

ject's attitude changes, the network generalizes through Figure 11(b). The animal was able to recognize all views

nonlinear interpolation. In the simple case, in which between the 0° and 1200 views. Moreover, performance

the number of basis functions is taken to be equal to the improved significantly around the -120'.

number of views in the training set, intepolation depends 4 Discussion
on the ci and or of the basis functions, and on the dis-
parity between the training views. Furthermore, unlike The main findings of this study are (a) that recogni-
schemes based on linear combination of 2D views [29], tion of a novel, three-dimensional object depends on the
the non-linear interpolation model predicts recognition viewpoint from which the object. is encountered, and (b)
of novel views beyond the above measured generalization that perceptual object-constancy can be achieved by fa-
field to occur for only those views situated between the miliarization with a limited number of views.
templates. The first demonstration of strong viewpoint depen-

To test this prediction experimentally, the ability of dence in the recognition of novel objects was that of Rock
the monkeys to generalize recognition to novel views and his collaborators (18,19]. These investigators exam-
was examined after training the animals with two suc- ined the ability of human subjects to recognize three-
cessively presented views of the target 1200 and 1600 dimensional, smoothly curved wire-like objects seen from
apart. one viewpoint, when encountered from a different atti-

The results of such an experiment are illustrated in tude and thus having a different 2D projection on the
Figures Ila and b. The monkey was initially trained to retina. Although their stimuli were real objects (made
identify the 00 and 1200 views of a wire-like object among from 2.5mm wire), and provided the subject with full
120 distractor objects of the same class. During this pe- 3D information, there was a sharp drop in recognition
riod the animal was given feedback as to the correctness for view disparities larger that approximately 30 degrees.
of the response. Training was considered complete when In fact, as subsequent investigations showed, subjects
the monkey's hit rate was consistently above 95%X, false could not even imagine how wire objects look when ro-
alarm rate remained below 10%, and the dispersion co- tated, despite instructions for visualizing the object from



another viewpoint [31]. Similar results were obtained in images of each other, due to accidental lack of self-
later experiments by Edelman and Bijlthoff (1992) with occlusion. Invariance for reflections has been reported
computer-rendered, wire-like objects presented stereo- earlier in the literature [2], and it clearly represents a
scopically or as flat. images [4,61. form of generalization. Finally, human subjects that

In this paper we provide evidence of similar view- were tested for comparison using the same apparatus
dependency of recognition for the nonhuman primate, exhibited recognition performance very similar to that
Monkeys were indeed unable to recognize objects ro- of the tested monkeys.
tated more than approximately 40 degrees of visual angle Thus, it appears that monkeys. just like human sub-
from a familiar view. These results are hard to recon- jects. show rotational invariance for familiar, basic-level
cile with theories postulating object-centered representa- objects, but. they fail to generalize recognition at the sub-
tions. Such theories predict uniform performance across ordinate level, when fine, shape-based discriminations
different object. views, provided 3D information is avail- are required to recognize an object. Interestingly, train-
able to the subject at the time of the first encounter. ing with a limited number of views (about 10 views for
Therefore, one question calling for discussion is whether the entire viewing sphere) was sufficient for all the mon-
or not information about, the object's structure was avail- keys tested to achieve view-independent performance.
able to the monkeys during the learning phase of these Recognition based entirely on fine, shape discrimina-
experiments. tions is not uncommon in daily life. We are certainly able

First of all, wires are visible in their entirety since, to recognize modern sculptures, mountains or cloud for-

unlike most opaque natural objects in the environment, mations. The largely view independent basic level recog-

regions in front do not substantially occlude regions in nition exhibited by adults may be the result of learning
back. Second, the objects were computer-rendered with of certain irreducible shapes early in life. Even those the-
appropriate shading and were presented in slow oscilla- ories suggesting that recognition involves the indexing of
tory motion. The motion parallax effects produced by a limited number of volumetric components [1] and the
such motion yield vivid and accurate perception of the detection of their relationships have to face the problem
3D structure of an object or surface [3,20]. In fact, psy- of learning components that cannot. be further decom-
chometric functions showing depth modulation thresh- posed. In other words, we still have to achieve represen-
olds as a function of spatial frequency of 3D corruga- tations of some elementary object forms that transcend
tions are very similar for surfaces specified through ei- the special viewpoint of the observer. Such representa-
ther disparity or motion parallax cues [21-23]. Further- tions usually rely on shape coding that is very similar to
more, experiments on monkeys have shown that nonhu- that required for the subordinate level of recognition.
man primates, too, possess the ability to see structure
from motion [26] in random-dot kinematograms. Thus, 5 Conclusions
during the learning phase of each observation period, in- Our results provide evidence supporting viewer-centered
formation about the three-dimensional structure of the object representation in the primate, at least for sub-
target was available to the monkey by virtue of shading, ordinate level classifications. While monkeys, just like
the kinetic depth effect, and minimal self-occlusion, human subjects, show rotational-invariance for familiar,

Could the view-dependent behavior of the animals be basic-level objects. they fail to generalize recognition for
a result of the monkeys' failing to understand the task? rotations more than 30 to 40 degrees when fine, shaped-
The monkey could indeed recognize a two-dimensional based discriminations are required to recognize an ob-
pattern as such, without necessarily perceiving it as a ject. The psychophysical performance of the animals is
view of an object. Correct performance around the fa- consistent with the idea that view-based approximation
miliar view could then be simply explained as the inabil- modules synthesized during training may indeed be one
ity of the animal to discriminate adjacent views. Several of several algorithms the primate visual system uses for
lines of arguments refute such an interpretation of the object recognition.
obtained results. For one, the animals easily generalized The visual stimuli used in these experiments were
recognition to all novel views of common objects. More- designed to provide accurate descriptions of the three-
over, when the wire-like objects had prominent charac- dimensional structure of the objects. Therefore our find-
teristics, such as one or more sharp angles, or a closure, ings are unlikely to be the result of insufficent depth
the monkeys were able to perform in a view-invariant information in the two-dimensional images for building
fashion. Second, when two views of the target were pre- a three-dimensional representation. Rather, it suggests
sented in the training phase the animals interpolated, that construction of viewpoint-invariant representations
often with 100% performance, for any view between the may not be possible for a novel object. Thus the view-
two trained views. point invariant performance typically observed when rec-

Third, for many wire-like objects the animal's recogni- ognizing familiar objects may eventually be the result of
tion was found to exceed criterion performance for views a sufficient number of two-dimensional representations,
that resembled "mirror-symmetrical", two-dimensional created for each experienced viewpoint.. The number of
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viewpoints is likely to depend on the class of an object [131 N.A. Maxmillan and ('.D. Creelnan. Detection
and may reach a minimum for novel objects that belong Theory: A Ustr's Guidf. ('abridge University Press,
to a familiar class, thereby sharing sufficiently similar New York, 1991.
transformation properties with the other class members. [14] D.H. McLain. Drawing contours from arbitrary
Recognition of an individual new face seen from one sin- data points. Th ('ompultr Journal, 17:318-324 1974.
gle view may be such an example. [15] T. Poggio. A Theory of How the Brain Might

Work, in ('old Spring Harbor Symposia on Quanidatlaf
Biology, Cold Spring Harbor Laboratory Press, pp. 899-
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-4 -*
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Rotation Around Y Axis

Figure 1. Example of three stimulus objects used in the experiments on object recognition. (a) Wire-like, (b)
spheroidal, and (c) common objects were rendered by a computer and displayed on a color monitor. The middle column of
the 'Targets' shows the view of each object as it appeared in the learning phase of an observation period. This view was
arbitrarily called the zero view of the object. Columns 1, 2, 4, and 5 show the views of each object when rotated -48, -24,
24, and 48 degrees about a vertical axis respectively. The rightmost column shows an example of a distractor object for each
object class. Sixty to 120 distractor objects were used in each experiment.
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(a)
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2mc
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Figure 2: Experimental paradigm (a) Description of the task. An observation period consisted of a learning phase, within
which the target object was presented oscillating -±100 around a fixed axis, and a testing phase during which the subjects were
presented with up to 10 single, static views of either the target or the distractors. The small inset in this and the following
figures show examples of the tested views. The subject had to respond by pressing one of two levers, right for the target, and
left for the distractors. (b) Description of the stimulus space. The viewpoint coordinates of the observer with respect to the
object were defined as the longitude and the latitude of the eye on a virtual sphere centered on the object. Viewing the object
from an attitude a, e.g. -60a with respect to the zero tiew, corresponded to a 60° rightwards rotation of the object around
the vertical axis, while viewing from an attitude b amounted to a rightwards rotation around the -45O axis. Recognition was
tested for views generated by rotations around the vertical (Y), horizontal (X), and the two oblique (±45°) axes lying on the
XY plane.

10

• . .. ...... . . .. alIle



-120 -60 0O 120Miii.
(a) (b)

100 1 100

W 60

40 N- . .40

20

-180 -90 0 g9 180 1 30 60
Rotation Around Y Axis Distractor ID

Figure 3: Recognition performance as a function of rotation in depth for wire-like objects. Data from the monkey
B63A. (a) The abscissa of the graph shows the rotation angle and the ordinate the hit rate. The small squares show
performance for each tested view for 240 presentations. The solid lines were obtained by a distance weighted least squares
smoothing of the data using the McLain algorithm. When the object is rotated more than about 30 to 40 degrees away
performance falls below 40%. (b) False alarms for the 120 different distractor objects. The abscissa shows the distractor
number, and the squares false alarm rate for 20 distractor presentations. (c) Recognition performance for rotations around
the vertical, horizontal, and the two oblique axes (-45*).
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Figure 4: Recognition performance as a function of rotation in depth for spheroidal objects. Data from the monkey
B63A. Conventions as in figure 3.
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Figure 5: Mean recognition performance as a function of rotation in depth for different types of objects. (a) and
(b) show data averaged from three monkeys for the wire and spheroidal objects. Performance of the monkey S5396 for
common-type objects. Conventions as in figure 3a.
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Figure 6: Improvement of recognition performance for views generated by 1800 rotations of wire-like objects. Data
from monkey S5396 Conventions as in figure 3(a). This type of performance was specific to only those wire-like objects, the
zero and 180' views of which resembled mirror symmetrical two-dimensional images due to accidental lack of self-occlusion.
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Figure 7: A network for object recognition (a) A view is represented as a vector of some visible feature points on the
object. On the wire objects these features could be the z, y coordinates of the vertices, the orientation, size, length and color
of the segments, etc. (b) An example of an RBF network in which the input vector consists of the segment orientations. For
simplicity we assume as many basis functions as the views in the training set, in this example four views (0, 60,120, and 180
degrees). Each basis unit, U,, in the "hidden-layer" calculates the distance IIV - Ti of the input vector V from its center Ti.
i.e. its learned or "preferred" view, and it subsequently computes the function exp(-IIV - Till) of this distance. The value of
this function is regarded as the activity of the unit, and it peaks when the input is the trained view itself. The activity of the
network is conceived as the weighted, linear sum of each unit's output superimpose to Gaussian noise (e E, N(V, 2)). Thick
lines show an instance of the network that was trained only with the zero view of the target. (c) Plots 1-4 show the output
of each RBF unit, under "zero-noise" conditions, when the unit is presented with views generated by rotations around the
vertical axis. (d) Network output for target and distractor views. The thick gray line on the left plot depicts the activity of
the network trained with 4 and the black line with one view (the zero view). The right plot shows the the network's output
for 36 views of 60 distractors.
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Figure 8: Decision theoretic analysis of the network output. (a) The curve fT(X), to the right, represents the distribution
of network activities that occur on those occasions when the input is a view of the target. The curve fD(X), to the left,
represents the distribution of activities when the input is a given distractor. The network's decision whether an input is a
target or a distractor depends on the decision criterion Xc. The gray area on the right of Xc represents the probability
P(TIT) of the network correctly identifying a target and the dark dotted area on the right of Xc represents the probability
P(TID) of a false alarm. On the left of Xc, the area marked with horizontal lines gives the probability of correct rejections,
and the area with vertical lines represents the probability of failing to recognize a target. (b) As Xc runs through its possible
values it generates a curvilinear relation between P(TIT) and P(TID) (thick black line), the area underneath which has been
shown to amount to the criterion independent percentage-correct responses of an ideal observer in a 2AFC task. The later
discriminability measure depends only on the distance d' between the distractor and target distributions. (c) Multiple normal
probability density functions can be approximated by a single gaussian distribution, indicated by the thick gray line, when
the means of the distributions are separated by a fraction of the standard deviation.
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Figure 9: Reciever operating characteristic (ROC) curves and performance of the RBF network. (a) White bars show
the distribution of the network activity when the input was any of the 60 distractor wire objects. Black bars represent the
actvity distribution for a given target view (-50, -30, 0, 30, and 50 degrees). (b) Reciever operating characteristic curves for
views generated by leftward rotations. (c) Reciever operating characteristic curves for views generated by rightward rotations.
(d) Network performance as an observer in a 2AFC task. Filled squares represent the activity of the network. The solid line
is the distance weighted least squares smoothing of the data for all tested views. The dashed line shows chance performance.
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Figure 10: ROC curves from one monkey in the old-new task used to study recognition. The data were obtained by

varying the a priori probability of target occurance in block of observation periods. The values used in this experiment were

0.2, 0.4, 0.6, and 0.8. (a) Each curve corresponds to a set of hit and false alarm rate values measured for a rightward rotation.

Rotations were done in 150 steps. (b) Same as in (a), but for leftward rotations. (c) Recognition performance for different

object views. Each filled circle represents the area under the corresponding ROC curve. The solid line models the data with

a single gaussian function.

18



(a)

so

~40

00 (b)

, 00

S40

Mli

Figure 11: Interpolation between two trained views. (a) In the learning phase the monkey was presented sequentially with
the 0' and 1200 views of a wire-like object, and subsequently tested with 36 views around any of the four axes (horizontal,
vertical and the two obliques). The spikes normal to the contour-plot show the hit rate for rotations around the Y axis. Note
the somewhat increased hit rate for views around the -120* view. The contour plot shows the performance of the for views
generated by rotating the object around either of the horizontal, vertical, and the two oblique axes. (b) Repetition of the
same experiment after briefly training the monkey with the 600 view of the wire object. The animal can now recognize any
view in the range of -300 to 1400 as well as around the -120' view. As predicted by the RBF model, generalization is limited
to views between the two trained views.
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